
FV3

THE GFDL
FINITE-VOLUME CUBED-SPHERE

DYNAMICAL CORE

SHIAN-JIANN LIN, WILLIAM PUTMAN, LUCAS HARRIS

AND THE GFDL FV3 TEAM

VERSION 1.0 (DRAFT)
Date November 28, 2017

RESPONSIBLE ORGANIZATION: NWS/NCEP/EMC

CHANGE RECORD PAGE

Version Date Page affected Description
1.0
(DRAFT)

11/28/2017 all Draft submitted to EMC

SIGNATURE PAGE

Prepared by: [???]

EMC Program Manager

Approved by: Vijay Tallapragada

Deputy Director

Date

Concurred by: Brian Gross

Acting EMC Director

Date

Contents

1 FV3 introduction 9
1.1 A brief history of FV3 . 9
1.2 Outline of the solver . 11

2 Stabilization and filtering options 15
2.1 Divergence damping . 15
2.2 Hyperdiffusion (flux, or “vorticity”) damping 17
2.3 Energy-, momentum-, and mass-conserving 2∆z filter 18
2.4 Model-top sponge layer and energy-conserving Rayleigh damp-

ing . 19

3 Physics-dynamics coupling 21
3.1 Staggered wind interpolation . 21
3.2 Condensate loading and mass conservation 21

4 Grid refinement techniques 25
4.1 Grid stretching . 25
4.2 Grid nesting . 26

A Namelist Guide 31
A.1 Entries in fv_core_nml . 31

A.1.1 Required options: . 31
A.1.2 Initialization options: . 32
A.1.3 I/O and diagnostic options: 35
A.1.4 Options controlling tracers and interactions with physics 36
A.1.5 Timestep options . 39
A.1.6 Grid options . 39

5

A.1.7 Solver options . 41
A.1.8 Nonhydrostatic options . 46
A.1.9 Damping options . 47

A.2 Entries in coupler_nml . 49
A.3 Entries in external_ic_nml . 50
A.4 Entries in surf_map_nml . 51
A.5 Entries in fv_grid_nml . 51
A.6 Entries in test_case_nml . 51
A.7 Entries in nest_nml . 52
A.8 Entries in nggps_diag_nml . 52
A.9 Entries in atmos_model_nml (for fvGFS) 52
A.10 Entries in fms_nml . 53

B Variables and notation 55
B.1 Important Relations . 56
B.2 References . 57
B.3 Revision History . 58

Disclaimer

We have made every effort to ensure that the information in this document
is as accurate, complete, and as up-to-date as possible. However, due to
the rapid pace of FV3 and FV3-powered model development the document
may not always reflect the current state of FV3 capabilities. Often, the code
itself is the best description of the current capabilities and the available
options, which due to limited space cannot all be described in full detail
here. Contact GFDL FV3 support (oar.gfdl.fvGFS_supportnoaa.gov) for as-
sistance and more information.

7

Chapter 1

FV3 introduction

1.1 A brief history of FV3

FV3 is a natural evolution of the hydrostatic Finite-Volume dynamical core
(FV core) originally developed in the 90s on the latitude-longitude grid. The
FV core started its life at NASA/Goddard Space Flight Center (GSFC) during
early and mid 90s as an offline transport model with emphasis on the con-
servation, accuracy, consistency (tracer to tracer correlation), and efficiency
of the transport process. The development and applications of monotonicity-
preserving Finite-Volume schemes at GSFC were motivated in part by the
need to have a solution for the noisy and unphysical negative water vapor
and chemical species (L94, LR96). It subsequently has been used by sev-
eral high-profile Chemistry Transport Models (CTMs), including the NASA-
community GMI model (Rotman et al., 2001, J. Geophys. Res.), GOCART
(Chin et al., 2000, J. Geophys. Res.), and the Harvard University-developed
GEOS-CHEM community model (Bey et al, 2001, , J. Geophys. Res.). This
transport module has also been used by some climate models, including the
ECHAM5 AGCM (Roeckner et al, 2003, MPI-Report No. 349). Motivated
by the success of monotonicity-preserving FV schemes in CTM applications,
a consistently-formulated shallow-water model was developed. This solver
was first presented at the 1994 PDE on the Sphere Workshop, and pub-
lished in LR97. The Lin-Rood algorithm for shallow-water equations main-
tains mass conservation and a key Mimetic property of “no false vorticity
generation”, and for the first time in computational geophysical fluid dy-

9

namics, uses high-order monotonic advection consistently for momentum
and all other prognostic variables, instead of the inconsistent hybrid finite-
difference and finite-volume approach used by practically all other “finite-
volume” models today. The full 3D hydrostatic dynamical core, the FV core,
was constructed based on the LR96 transport algorithm and the Lin-Rood
shallow-water algorithm (LR97). The pressure gradient force is computed by
the L97 finite-volume integration method, derived from Green’s integral the-
orem and based directly on first principles, and demonstrated errors an or-
der of magnitude smaller than other pressure-gradient schemes at the time.
The vertical discretization is the “vertically Lagrangian” scheme described
by L04, the most powerful aspect of FV3, which permits great computational
efficiency as well as greater accuracy given the same vertical resolution. The
FV core was implemented in the NCAR CESM model in 2001 (Rasch et al,
2006, J. Climate) and in the GFDL CM2 model in 2004 (Delworth et al, 2006,
J. Climate).

The need to scale to larger number of processors in modern massively-
parallel environments and the scientific advantage of eliminating the polar
filter led to the development of FV3, the cubed-sphere version of FV. The
cubed-sphere FV3 is in use in all GFDL and GSFC global models, and the
cubed-sphere version of the LR96 advection scheme is used by the most re-
cent version of GEOS-CHEM. Most recently, a computationally efficient non-
hydrostatic solver has been implemented using a traditional semi-implicit
approach for treating the vertically propagating sound waves. A second op-
tion for the non-hydrostatic solver, using a Riemann solver to nearly exactly
solve for vertical sound-wave propagation, is also available. The Riemann
solver is highly accurate and is very efficient if the Courant number for verti-
cal sound wave propagation is small, and so may be very useful for extremely
high (< 1 km) horizontal resolutions. In July 2016 this nonhydrostatic core
has been selected for the Next-Generation Global Prediction System (NG-
GPS), paving the way for the unification of not only weather and climate
models but also potentially regional and global models.

1.2 Outline of the solver

FV3 is the solver that integrates the compressible, adiabatic Euler equa-
tions in a weather or climate model. The solver is modular and designed
to be called as a largely independent component of a numerical model, con-
sistent with modern standards for model design; however for best results it
is recommended that a model using FV3 as its dynamical core should use
the provided application programming interface (API) to invoke the solver
as well as to use the provided utility routines consistent with the dynam-
ics, particularly for the initialization, updating the model state by time ten-
dencies from the physics, and for incorporating increments from the data
assimilation system.

The leftmost column of Figure 1.1 shows the external API calls used dur-
ing a typical process-split model integration procedure. First, the solver is
called, which advances the solver a full “physics” time step. This updated
state is then passed to the physical parameterization package, which then
computes the physics tendencies over the same time interval. Finally, the
tendencies are then used to update the model state using a forward-in-time
evaluation consistent with the dynamics, as described in Chapter 3.

There are two levels of time-stepping inside FV3. The first is the “remap-
ping” loop, the orange column in Figure 1.1. This loop has three steps:

1. Perform the Lagrangian dynamics, the loop shown in the green column
of Figure 1.1

2. Perform the sub-cycled tracer advection along Lagrangian surfaces, us-
ing accumulated mass fluxes from the Lagrangian dynamics. Subcy-
cling is done independently within each layer to maintain local (within
each layer) stability.

3. Remap the deformed Lagrangian surfaces on to the reference, or “Eu-
lerian”, coordinate levels.

This loop is typically performed once per call to the solver, although it is
possible to improve the model’s stability by executing the loop (and thereby
the vertical remapping) multiple times per solver call.

fv_dynamics()

FV3 solver

dyn_core()

Lagrangian dynamics

fv_tracer2d()

Sub<cycled=tracer=transport

OpenMP on=k

Lagrangian_to_Eulerian()

Vertical=Remapping

(i,k)=OpenMP on=j

c_sw(),=etc.

C<grid=solver

d_sw()

Forward=Lagrangian dyn.

OpenMP on=k

update_dz_d()

Forward=δz evaluation

OpenMP on=k=

one_grad_p()/nh_p_grad()

Backwards=horizontal=PGF

OpenMP on=k

riem_solver()

Backwards=vertical=PGF,=

sound=wave=processes

(i,k)=OpenMP on=j

[physics]

fv_update_phys()

Consistent=field=update

dt_atmos
k_split

“remapping”=loop

n_split

“acoustic”=loop

Figure 1.1: FV3 structure, including subroutines and time-stepping. Blue
represents external API routines, called once per physics time step; orange
routines are called once per remapping time step; green routines once per
acoustic time step.

The Lagrangian dynamics is the second level of time-stepping in FV3.
This is the integration of the dynamics along the Lagrangian surfaces, across
which there is no mass transport. Since the time step of the Lagrangian
dynamics is limited by horizontal sound-wave processes, this is called the
“acoustic” time step loop. (Note that the typical assumption that the advec-
tive wind speed is much slower than the sound wave speed is often violated
near the poles, since the speed of the polar night jets can exceed two-thirds
of the speed of sound.) The Lagrangian dynamics has two parts: the C-grid
winds are advanced a half-time step, using simplified (but similarly con-
structed) core routines, which are then used to provide the advective fluxes
to advance the D-grid prognostic fields a full time step. The integration pro-

cedure is similar for both grids: the along-surface flux terms (mass, heat,
vertical momentum, and vorticity, and the kinetic energy gradient terms)
are evaluated forward-in-time, and the pressure-gradient force and elastic
terms are then evaluated backwards-in-time, to achieve enhanced stability.

Chapter 2

Stabilization and filtering
options

2.1 Divergence damping
Horizontal divergence (along a Lagrangian surface) is computed as a cell-
integrated quantity on the dual grid:

D = 1
∆Ac

[
δx (uc∆yc sinα)+δy (vc∆xc sinα)

]
(2.1)

The Laplacian of D can also be computed as a cell-integrated quantity on
the dual grid:

∇2D = 1
∆Ac

[
δx

(
δxD
∆x

∆yc sinα
)
+δy

(
δyD
∆y

∆xc sinα
)]

(2.2)

This operator can be applied on ∇2D instead of D to yield ∇4D. The damp-
ing is then applied when the forward time step is taken for the horizontal
dynamics along vertically-Lagrangian surfaces:

un+1 = un +·· ·+νD
δx∇2ND
∆x

(2.3)

vn+1 = vn +·· ·+νD
δy∇2ND
∆y

(2.4)

where N (equal to the namelist parameter nord) is 1 for fourth-order and
2 for sixth-order damping. The nondimensional damping coefficient is given

15

as

νD = (d4∆Amin)N+1 (2.5)

in which d4 is the parameter d4_bg in the namelist, and ∆Amin is the global
minimum grid-cell area. It is recommended that this parameter be set to a
value between 0.1 and 0.16, with instability likely for higher or lower values.
Note that divergence damping is necessary as there is no implicit damping
on the divergence in FV3. An optional second-order ∇2 damping, in addi-
tion the higher-order divergence damping, can be applied as well; in this
case the added damping is of the form ν2D

δxD
∆x , where ν2D = d2∆Amin. Typ-

ically, the coefficient for d2 should be much smaller—by at least an order of
magnitude—than the higher-order coefficient, if it is used at all, since the
second-order damping is only weakly scale-selective and will significantly
diffuse even resolved-scale features.

The divergence damping can also be modified to add an approximate
Smagorinsky-type damping, in which second-order divergence damping can
be added to the flow dependent on the amount of stretching and dilation
in the flow. In this case, the d2 in the expression for ν2D is replaced by
dS∆t

√
D2 +ζ2, where dS is the Smagorinsky coefficient (typically set to 0.2

if used) and ζ is the relative vorticity interpolated to cell corners so as to be
co-located with the divergence. This form of the damping coefficient is more
physical than the artificial damping discussed in the rest of this chapter, and
will typically be very weak except in regions of very strong flow deformation.

Divergence and flux damping (described in the next section) are both
applied entirely within Lagrangian surfaces; there is no explicit diffusion
applied across the surfaces. However, in regions of vertical motion the La-
grangian surfaces are distorted in the vertical as they follow the flow upward
or downward. The amount of the distortion depends on the along-surface
gradient of the vertical velocity; so where the distortion is largest is where
there is the strongest horizontal shearing of the vertical velocity, which is
also where ∇2n of the scalar fields should be the largest.

2.2 Hyperdiffusion (flux, or “vorticity”) damp-
ing

Traditionally in FV3computational noise is controlled through two means:
the explicit divergence damping, and the implicit, nonlinear diffusion from
the monotonicity constraint used in computing the fluxes. However, the im-
plicit diffusion may be too heavily damping of marginally-resolved flow fea-
tures, and for high-resolution applications it may be beneficial to use a non-
monotonic scheme and then add a user-controllable hyperdiffusion instead.
This added hyperdiffusion need not be as strong as the divergence damp-
ing, since the non-monotonic advection schemes are still weakly diffusive
(while no implicit diffusion is applied to the divergence), and often the hy-
perdiffusion coefficient d f (vtdm4) should be much less than the divergence
damping coefficient d4.

In FV3the hyperdiffusion is primarily meant to diffuse the kinetic en-
ergy of the rotational component of the flow, similarly to how the divergence
damping dissipates the kinetic energy in the divergence component of the
flow. (For this reason, the hyperdiffusion is sometimes called “vorticity”
damping.) The diffusion is applied to the vorticity flux, allowing application
of diffusion to only the rotational component fo the flow without needing to
explicitly compute the rotational component.To maintain consistent advec-
tion of the other prognostic variables—w, θv, and δp∗—the fluxes for these
quantities are diffused as well, so that the potential vorticity and updraft
helicity are still consistently advected as if they were scalars. (There is no
way to add diffusion to the tracer mass fluxes, since higher-order diffusion
cannot ensure monotonicity preservation without performing an additional
flux limiting, adding even more implicit diffusion.)

The hyperdiffusion is equal to the order of the divergence damping, un-
less eighth-order divergence damping is used, for which the hyperdiffusion
remains sixth-order. The diffusion operator itself is second-order, but higher-
order diffusion is easily computed by repeatedly applying the diffusion oper-
ator, as is done for the divergence damping.

Vertical vorticity is a cell-integrated quantity on the model grid. The
vorticity fluxes vΩ/∆x and −uΩ/∆y are used to update the vector-invariant
momentum equations. We can apply damping on the vorticity as well; to

maintain consistent advection, the same damping is applied to the mass,
heat, and vertical momentum fields, all of which are co-located with the
vorticity. This additional damping is beneficial when using a non-monotonic
advection scheme, which lacks the implicit diffusion of monotonic advection.

Since the diffusion added to the vorticity fluxe is known explicitly, the
loss of kinetic energy due to this explicit diffusion can be computed. The
lost energy optionally can be added back as heat, after applying a horizontal
smoother to the energy density field (so as not to restore the grid-scale noise
which the damping was intended to remove). This can greatly improve the
dynamical activity on marginally-resolved scales.

2.3 Energy-, momentum-, and mass-conserving
2∆z filter

Local Richardson-number dynamic instabilities can create instabilities, es-
pecially in higher-top models, if the vertical turbulence scheme in the phys-
ical parameterizations is either disabled or insufficiently-strong to relieve
these instabilities. These instabilities can grow large enough to crash the
model. To relieve these instabilities, FV3has the option to use a local (2∆z),
vertical mixing to release the instability. This is similar to the Richardson-
number based subgrid-scale diffusion formulations of Lilly (1962, Tellus)
and of Smagorinsky (1963), although their isotropic formulations have been
simplified so as to only act on vertical gradients and perform diffusion in
the vertical. This filter is completely local (2∆z), diagnosing and acting only
on adjacent grid cells, and is typically applied only in the stratosphere and
above to avoid interference with physical dynamic instabilities in the free
troposphere or boundary layer which are more accurately-simulated by a
planetary boundary layer scheme or the resolved dynamics. This filter is
applied at the same frequency that the physical parameterizations are up-
dated.

We compute the local Richardson number on cell interfaces. Recall that
k = 1 is the top layer of the domain and the index increases downward:

Rik− 1
2
= gδzδzθv

(θk
v +θk−1

v)((δzu)2 + (δzv)2)
(2.6)

If Ri < 1, then mixing M is performed, scaled by Ri so that complete mixing
occurs if Ri≤ 0 :

M =max
(
1, (1−Ri)2) δp∗kδp∗(k−1)

δp∗k +δp∗(k−1) (2.7)

The mixing is applied to each variable, including the winds interpolated to
the A-grid (necessary for application of the physical paramterization ten-
dencies) on a timescale τ (namelist parameter fv_sg_adj) which should
be larger than the physics timestep to avoid suppressing resolved convec-
tive motions. The mixing is applied to the momentum (δp∗ua, δp∗va), total
energy, air mass, and all tracer masses, so that all of these quantities are
conserved:

∂φ

∂t

k
= − M

δp∗k

(
φk −φk−1

) 1
τ

(2.8)

∂φ

∂t

k−1
= + M

δp∗k

(
φk −φk−1

) 1
τ

, (2.9)

where φ is a generic scalar. Note that since total energy and momentum are
both conserved, lost kinetic energy automatically becomes heat.

This mixing is most useful for removing instabilities caused by vertically-
propagating waves near the top of the domain. The namelist variable n_sponge
controls the number of levels at the top of the domain to which the filter is
applied.

2.4 Model-top sponge layer and energy-conserving
Rayleigh damping

Two forms of damping are applied at the top of the domain to absorb vertically-
propagating waves nearing the upper boundary. The first is a diffusive
sponge layer, which applies second-order damping to the divergence and to
the vertical-momentum flux, and optionally also to the vorticity and mass
fluxes if the hyperdiffusion is enabled. (This differs from earlier versions
of FV3, which instead of adding explicit damping applied first-order upwind
advection in the sponge layer, the strength of which is flow-dependent and

not user-controllable.) The damping is computed in the same way as de-
scribed earlier, although typically a very strong value of d2 is used to ensure
the vertically-propagating waves are sufficiently damped. The additional ∇2

sponge-layer damping is applied to the top two layers of the model, with a
weaker damping also applied in the third layer if dk2 > 0.05. Since the model
top is at a constant pressure, not constant height, it acts as a flexible lid, and
therefore does not reflect as strongly as a rigid lid would.

The second form of damping is a Rayleigh damping, which damps all
three components of the winds to zero with a timescale which depends on
the pressure. Given a minimum timescale τ0 and a cutoff pressure pc the
damping timescale is:

τ
(
p∗)= τ0 sin

(
π

2
log(pc/p∗)
log(pc/pT)

)2
. (2.10)

The strength of the applied damping is then determined by the magnitude
of the cell-mean 3D vector wind U3D , including the vertical velocity, divided
by a scaling velocity U0. The damping is only applied if the horizontal wind
speed exceeds a latitude-dependent threshold (currently 25cosθ) or if the
vertical velocity is larger than a given threshold. The damping is then ap-
plied, at the beginning of each large (physics) time step and before the La-
grangian dynamics is first called, by:

u ← u (1+τU3D /U0)−1 . (2.11)

The dissipated kinetic energy can then be restored as heat:

T ← T + 1
2

U3D ∗ (
1− (1+τU3D /U0)−2) /Cv. (2.12)

Chapter 3

Physics-dynamics coupling

3.1 Staggered wind interpolation
The coupling to physical parameterizations and surface models is straight-
forward; the primary complication is interpolating between cell-centered,
orthogonal winds used by most physics packages and the FV3 staggered non-
orthogonal D-grid. The unstaggered orthogonal wind is defined by horizontal
components in longitude and latitude; the staggered non-orthogonal D-grid
wind is defined by the winds tangential to the grid-cell interfaces by the hor-
izontal covariant components in the cubed-sphere curvilinear components.
A two-stage horizontal re-mapping of the wind is used when coupuling the
physics packages to the dynamics. The D-grid winds are first transformed
to locally orthogonal and unstaggered wind components at cell centers, as
input to the physics. After the physics returns its tendencies, the wind ten-
dencies (du/dt, dv/dt) are then remapped (using high-order algorithm) back
to the native grid for updating the prognostic winds. This procedure satisfies
the “no data no harm” principle — that the interpolation/remapping proce-
dure creates no tendency on its own if there are no external sources from
physics or data assimilation.

3.2 Condensate loading and mass conservation
The mass δm, and thereby also δp∗, in FV3 is the total mass of both the dry
air and of the water categories, including the vapor and condensate phases;

21

the precise number N of water species is dependent upon the microphysics
scheme used, or may be zero. This incorporates the effect of condensate
loading into the air mass without a special parameterization for loading.
The dry weight (per unit area) can be given as:

gδmd = δp∗
(
1−

N∑
m=1

qm

)
=

(
δp∗−

N∑
m=1

Qm

)
. (3.1)

where Qm = δp∗qm is the tracer mass. Dry mass should be conserved by the
physical parameterizations; here we will assume this to be the case, so δmd
should be a constant in each grid cell during the physical tendency updates.
The condition for dry mass conservation is then given by

δp∗(n+1) = δp∗n +δτ
N∑

m=1

dQm

dt
= δp∗n∆M. (3.2)

where ∆M = 1+δτ∑N
m=1

dqi
dt . Physics packages usually return the rate of

change in tracer mass dQm/dt, and so is independent of whether the solver
uses total air mass or just dry air mass (as is done in many weather models).
The tracer update is then done by:

Qn+1
m =Qn

m +δτdQm

dt
(3.3)

or, using (3.2)

qn+1
m =

(
Qn

m +δτdqm

dt
δp∗n

)
/
(
δp∗(n+1)

)
(3.4)

=
(
Qn

m +δτdqm

dt
δp∗n

)
/
(
δp∗n∆M

)
. (3.5)

The full mass-conserving update algorithm is then:

q∗
m = qn

m +δτdqm

dt
(3.6)

∆M = 1+δτ
N∑

m=1

dqm

dt
(3.7)

δpn+1 = δpn∆M (3.8)

qn+1
m = q∗

m/∆M (3.9)

Note that often the mass of non-water species, such as ozone or aerosols, are
considered so small that they are not included in δm; however, since their
mixing ratio is still the quotient of the tracer mass and the total air mass,
if the effects of water species are included in the total air mass their mixing
ratios must still be adjusted by (3.9).

Chapter 4

Grid refinement techniques

There is a need for increasingly high-resolution numerical models for weather
and climate simulation, but also an increasing need for coupling the newly-
resolved scales to the large- and global-scale circulations, for which limited-
area models are only of limited use. However, uniformly-high resolution
global models are not always practical on present-day computers. The solu-
tion to this problem is to locally refine a global grid, allowing for enhanced
resolution over the area of interest while also representing the global grid.
FV3 has two variable-resolution methods: a simple Schmidt transformation
for grid stretching, and two-way regional-to-global nesting. These methods
can be combined for maximum flexibility.

FV3 can also be configured as a doubly-periodic solver, in which the
cubed-sphere is replaced by a Cartesian-coordinate doubly-periodic horizon-
tal grid; otherwise the solver is unchanged. This can be useful for idealized
simulations at a variety of resolutions, including very high horizontal reso-
lutions useful for studying explicit convection.

4.1 Grid stretching

Here we follow the development of HLT16. A relatively simple variable-
resolution grid can be created by taking the original cubed-sphere grid and
applying the transformation of F. Schmidt (Beitr. Atmos. Phys., 1977) to
“pull” grid intersections towards a “target” point, corresponding to the center
point of the high-resolution region. This is done in two steps: the grid is

25

distorted towards the south pole to get the desired degree of refinement, and
then the south pole is rotated to the target point using a solid-body rotation.
Distorting to the south pole means that the longitudes of the points are not
changed, only the latitudes, greatly simplifying the transformation.

The transformation of the latitude θ to ϑ is given by:

sinϑ= D+sinθ
1+D sinθ

(4.1)

where the distortion is a function of the stretching factor c, which can be any
positive number:

D = 1− c2

1+ c2 . (4.2)

Using c = 1 causes no stretching. Note that other forms for the transforma-
tion could also be used without making any other changes to the solver.

Although the grid has been deformed, the solver still uses the assump-
tion that the grid cells are bounded by great-circle arcs, which are not strictly
identical to a Schmidt transformation of the cubed-sphere arcs of the un-
stretched grid.

4.2 Grid nesting
Using grid nesting can greatly increase the flexibility of grid refinement in
the model, at the cost of greater complexity in the solver. The major strength
of grid nesting is its ability to use independent configurations on each grid,
including different time steps and physical parameterizations, most appro-
priate for that particular grid. The ability to use a longer time step on
the coarse grid than on the nested grid can greatly improve the efficiency
of a nested-grid model; and choosing parameterizations independently al-
lows values appropriate for each resolution without needing compromise or
“scale-aware” parameterizations.

Here we follow the development of HL13, with additional updates neces-
sary for the nonhydrostatic solver. Implementing two-way grid nesting in-
volves two processes: interpolating the global grid variables to create bound-
ary conditions for the nested-grid, and then updating the coarse-grid solu-
tion with nested-grid data in the region they overlap. The goal is to do so
in as efficient of a manner consistent with the finite-volume methodology.

A major feature of FV3’s nesting is to use concurrent nesting, in which the
nested and coarse grids run simultaneously, akin to how coupled models run
their atmosphere and ocean components at the same time on different sets
of processors. This can greatly reduce the amount of load imbalance between
the different processors.

The entire nesting cycle is as follows, starting at the beginning of call to
the solver:

• For each p_split step:

– Call solver

– Fetch boundary condition data from coarse grid

– In Lagrangian dynamics, update boundary conditions at each ∆t
by extrapolating from two earlier coarse-grid states.

– Perform tracer transport and vertical remapping

– Perform two-way update

• Call physics

Note that we do not do a compile cycle every coarse-grid time step, unlike
many regional nested-grid models. The cycling can be carried out multiple
times per physics time step, if more frequent updates of the boundary condi-
tions and of the two-way communication are considered necessary. There is
also an option to perform the last two-way update after the physics, instead
of before, which changes how the physical parameterizations interact with
the nested-grid solution passed to the coarse grid. Performing the update
before calling the physics has been found to yield better results in real-data
forecasts.

Currently, nested grids in FV3 are constrained to be a proper refinement
of a subset of coarse-grid cells; that is, each coarse-grid cell in the nested-
grid region is subdivided into N×N nested-grid cells. This greatly simplifies
the nested-grid boundary condition interpolation and the two-way updating.
Nested grids are also static and constrained to lie within one coarse-grid
face. However, the algorithm does not require an aligned, static grid in one
cube face, and any of these conditions may be relaxed in the future.

The nested-grid boundary conditions are implemented in a simple way.
Coarse-grid data is interpolated from the coarse grid into the halo of the

nested grid, thereby providing the nested-grid boundary conditions. Linear
interpolation, although it is simple and and is not conserving, does have the
advantage of not introducing new extrema in the interpolated field. The
boundary conditions for staggered variables are interpolated directly from
the staggered coarse grids. Boundary conditions are needed for each prog-
nostic variable, including the tracers; also, boundary conditions are needed
for the C-grid winds, available at each half-time step, and for the divergence
when using fourth- or higher-order divergence damping.

Finally, boundary conditions for the layer-interface nonhydrostatic pres-
sure anomalies are also needed to evaluate the pressure-gradient force. In-
stead of interpolating these interface values from the coarse grid, they are
instead diagnosed and interpolated from the other boundary condition vari-
ables using the same methods as the semi-implicit solver.

Most nested-grid models perform time-interpolation between two coarse-
grid states on each time step, but since the grids are integrated concurrently
in FV3, interpolation is not possible. Instead, we can extrapolate between
two earlier coarse-grid states. If interpolated coarse-grid variables are avail-
able at times t and t−∆τ, where ∆τ= N∆t, then the extrapolation for a given
variable φ at time t+nδt (n = 1, . . . , N) is given by:

φt+nδt =
(
1+ n

N

)
φt − n

N
φt−∆τ. (4.3)

The extrapolation is constrained for positive-definite scalars so that the value
of the boundary condition at t+∆τ is non-negative, which is done by the sub-
stitution φt−∆τ→min

(
φt−∆τ, 2φt).

Two-way updates from the nested to the coarse grid are performed con-
sistent with the finite-volume numerics. Scalars are updated to the coarse
grid by performing an average of nested-grid cells, consistent with the values
being cell-averages. The staggered horizontal winds are updated by averag-
ing the winds on the faces of nested-grid cells abutting the coarse-grid cell
being updated, so that the update preserves the average of the vorticity on
the nested-grid cells. In FV3 only the three wind components and the tem-
perature is updated to the coarse grid; the air and tracer masses are not
updated, trivially conserving their masses on the nested grid, and reducing
the amount of noise created through overspecification of the solution on the
coarse grid. Since the air mass determines the vertical coordinate, which

will differ between the two grids, the averaged nested-grid data is remapped
onto the coarse-grid’s vertical coordinate.

Appendix A

Namelist Guide

A.1 Entries in fv_core_nml

A.1.1 Required options:

layout Integer(2): Processor layout on each tile. The number of PEs as-
signed to a domain must equal layout(1)*layout(2)*ntiles. Must be set.

npx Integer: Number of grid corners in the x-direction on one tile of the
domain; so one more than the number of grid cells across a tile. On the
cubed sphere this is one more than the number of cells across a cube
face. Must be set.

npy Integer: Number of grid corners in the y-direction on one tile of the
domain. This value should be identical to npx on a cubed-sphere grid;
doubly periodic or nested grids do not have this restriction. Must be
set.

npz Integer: Number of vertical levels. Each choice of npz comes with
a pre-defined set of hybrid sigma-pressure levels and model top (see
fv_eta.F90). Must be set.

ntiles Integer: Number of tiles on the domain. For the cubed sphere, this
should be 6, one tile for each face of the cubed sphere; normally for
most other domains (including nested grids) this should be set to 1.
Must be set.

31

A.1.2 Initialization options:

add_noise Real: amplitude of random thermal noise (in K) to add upon
startup. Useful for perturbing initial conditions. -1 by default; disabled
if 0 or negative.

adjust_dry_mass Logical: whether to adjust the global dry-air mass to the
value set by dry_mass. This is only done in an initialization step, par-
ticularly when using an initial condition from an external dataset, in-
terpolated from another resolution (either horizontal or vertical), or
when changing the topography, so that the global mass of the atmo-
sphere matches some estimate of observed value. False by default. It
is recommended to only set this to True when initializing the model.

breed_vortex_inline Logical: whether to bogus tropical cyclones into the
model, which are specified by an external file. Options are set in
fv_nwp_nudge_nml. False by default.

dry_mass Real: if adjust_dry_mass is true, sets the global dry air mass,
measured in the globally-averaged surface pressure (Pascals) by adding
or removing mass from the lowest layer of the atmosphere as needed.
98290. (Pa) by default.

external_ic Logical: Whether to initialize the models state using the data
in an externally specified file, given in res_latlon_dynamics. By de-
fault this file is assumed to be a legacy lat-lon FV core restart file;
set either ncep_ic or fv_diag_ic to true override this behavior..false.
by default. Note that external_ic = true will cause the model to re-
initialize the dynamical fields from the input dataset regardless of
whether warm_start is set.

full_zs_filter Logical: whether to apply the on-line topography filter during
initialization. Only active if get_nggps_ic = .true. This is so topogra-
phy filtering can be performed on the initial conditions output by the
pre-processing tools, which currently do not support topography filter-
ing for some configurations (such as the nested grid); this also allows
the user to easily test changes to the topography filtering on the sim-
ulation. Note that for all other initialization methods (if external_ic

= .true.) the on-line topography filter will be applied automatically
during the initialization of the topography. .false. by default.

mountain Logical: takes topography into account when initializing the
model. Set this to true to apply the terrain filter (if n_zs_filter = 2
or 4) upon startup; also set to True when cold starting so that the
topography can be initialized. Only set this to false if you wish to cold-
start without any topography; this value is ignored for the aquaplanet
test_case = 14. True by default. It is highly recommended to not alter
this value unless you know what you are doing.

na_init Integer: Number of forward-backward dynamics steps used to ini-
tialize adiabatic solver. This is useful for spinning up the nonhydro-
static state from the hydrostatic GFS analyses. 0 by default. Recom-
mended to set this to a non-zero value (1 or 2 is typically sufficient)
when initializing from GFS or ECMWF analyses.

ncep_ic Logical: If external_ic =.true., this variable says whether the file
in res_latlon_dynamics is an NCEP analysis or reanalysis file. This
option zeros out all tracer fields except specific humidity..false. by de-
fault.

nggps_ic Logical: If external_ic =.true., reads initial conditions from horizontally-
interpolated output from chgres. False by default. Additional options
are available through external_ic_nml.

ecmwf_ic Logical: If external_ic =.true., reads initial conditions from ECMWF
analyses. .false. by default.

external_eta Logical: If .true., reads the interface coefficients ak and bk
from either the restart file (if restarting) or from the external initial
condition file (if nggps_ic or ecwmf_ic are .true.). This overrides the
hard-coded levels in fv_eta. .false. by default.

nord_zs_filter Integer: order of the topography filter applied to n_zs_filter.
Set to 2 to get a second-order filter, or 4 to get a fourth-order filter;
other values do no filtering. 0 by default. This should not be set to a
non-zero value on multiple successive simulations; the filter is applied

every time the model restarts. This option is useful for testing the
terrain filter, and should not be used for regular runs.

npz_rst Integer: If using a restart file with a different number of vertical
levels, set npz_rst to be the number of levels in your restart file. The
model will then remap the restart file data to the vertical coordinates
specified by npz. 0 by default; if 0 or equal to npz no remapping is
done.

nudge Logical: whether to use the nudging towards the state in some externally-
supplied file (such as from reanalysis or another simulation). Further
nudging options are set in fv_nwp_nudge_nml. False by default.

nudge_dz Logical: during the adiabatic initialization (na_init > 0), if set
to .true. delz is nudged back to the value specified in the initial con-
ditions, instead of nudging the temperature back to the initial value.
Nudging delz is simpler (faster), doesn’t require consideration of the
virtual temperature effect, and may be more stable. .false. by default.

nudge_ic Logical: same as nudge, but works in adiabatic solo_core simu-
lations to nudge the field to a single external analysis file. False by
default.

nudge_qv Logical: during the adiabatic initialization (na_init > 0), if set to
.true., the water vapor profile is nudged to an analytic fit to the HALOE
climatology. This is to improve the water vapor concentrations in GFS
initial conditions, especially in the stratosphere, where values can be
several times higher than observed. This nudging is unnecessary for
other ICs, especially the ECMWF initial conditions. .false. by default.

n_zs_filter Integer: number of times to apply a diffusive filter to the to-
pography upon startup, if mountain is True and the model is not being
cold-started. This is applied every time the model is warm-started, so if
you want to smooth the topography make sure this is set to 0 after the
first simulation. 0 by default. If initializing the model from cold-start
the topography is already being filtered by an amount appropriate for
the model resolution.

res_latlon_dynamics character(len=128) If external_ic =.true. gives the
filename of the input IC file. INPUT/fv_rst.res.nc by default.

res_latlon_tracers character(len=128) If external_ic =.true. and both ncep_ic
and fv_diag_ic are.false., this variable gives the filename of the ini-
tial conditions for the tracers, assumed to be a legacy lat-lon FV core
restart file. INPUT/atmos_tracers.res.nc by default.

warm_start Logical; whether to start from restart files, instead of cold-
starting the model. True by default; if this is set to true and restart
files cannot be found the model will stop.

A.1.3 I/O and diagnostic options:

agrid_vel_rst Logical: whether to write the unstaggered latitude-longitude
winds (ua and va) to the restart files. This is useful for data assimila-
tion cycling systems which do not handle staggered winds. .false. by
default.

check_negative Logical: whether to print the most negative global value
of microphysical tracers.

fv_debug Logical: whether to turn on additional diagnostics in fv_dynamics..false.
by default.

fv_land Logical: whether to create terrain deviation and land fraction for
output to mg_drag restart files, for use in mg_drag and in the land
model..false. by default;.true. is recommended when, and only when,
initializing the model, since the mg_drag files created provide a much
more accurate terrain representation for the mountain gravity wave
drag parameterization and for the land surface roughness than either
computes internally. This has no effect on the representation of the
terrain in the dynamics.

io_layout Integer(2): Layout of output files on each tile. 1,1 by default,
which combines all restart and history files on a tile into one file. For
0,0, every process writes out its own restart and history files. If not

equal to 1,1, you will have to use mppnccombine to combine these out-
put files prior to post-processing, or if you want to change the number
of PEs. Both entries must divide the respective value in layout.

nf_omega Integer: number of times to apply second-order smoothing to the
diagnosed omega. When 0 the filter is disabled. 1 by default.

print_freq Integer: number of hours between print out of max/min and
air/tracer mass diagnostics to standard output. 0 by default, which
never prints out any output; set to -1 to see output after every dt_atmos.
Computing these diagnostics requires some computational overhead.

range_warn Logical: checks whether the values of the prognostic variables
are within a reasonable range at the end of a dynamics time step, and
prints a warning if not. False by default; adds computational overhead,
so we only recommend using this when debugging.

write_3d_diags Logical: whether to write out three-dimensional dynami-
cal diagnostic fields (those defined in fv_diagnostics.F90). This is use-
ful for runs with multiple grids if you only want very large 3D diag-
nostics written out for (say) a nested grid, and not for the global grid.
False by default.

A.1.4 Options controlling tracers and interactions with
physics

adiabatic Logical: whether to skip any physics. If true, the physics is not
called at all and there is no virtual temperature effect. False by de-
fault; this option has no effect if not running solo_core.

do_Held_Suarez Logical: whether to use Held-Suarez forcing. Requires
adiabatic to be false. False by default; this option has no effect if not
running solo_core.

do_uni_zfull Logical: whether to compute z_full (the height of each model
layer, as opposed to z_half, the height of each model interface) as the
midpoint of the layer, as is done for the nonhydrostatic solver, instead
of the height of the location where p = p̄ the mean pressure in the

layer. This option is not available for fvGFS or the solo_core. .false. by
default.

dnats Integer: The number of tracers which are not to be advected by
the dynamical core, but still passed into the dynamical core; the last
dnats+pnats tracers in field_table are not advected. 0 by default.

dwind_2d Logical: whether to use a simpler & faster algorithm for inter-
polating the A-grid (cell-centered) wind tendencies computed from the
physics to the D-grid. Typically, the A-grid wind tendencies are first
converted in 3D cartesian coordinates and then interpolated before
converting back to 2D local coordinates. When this option enabled,
a much simpler but less accurate 2D interpolation is used. False by
default.

fill Logical: Fills in negative tracer values by taking positive tracers from
the cells above and below. This option is useful when the physical
parameterizations produced negatives. False by default.

inline_q Logical: whether to compute tracer transport in-line with the rest
of the dynamics instead of sub-cycling, so that tracer transport is done
at the same time and on the same time step as is p and potential tem-
perature. False by default; if true, q_split and z_tracer are ignored.

ncnst Integer: Number of tracer species advected by fv_tracer in the dy-
namical core. Typically this is set automatically by reading in values
from field_table, but ncnst can be set to a smaller value so only the
first ncnst tracers listed in field_table are not advected. 0 by default,
which will use the value from field_table.

nwat Integer: Number of water species to be included in condensate and
water vapor loading. The masses of the first nwat tracer species will be
added to the dry air mass, so that p is the mass of dry air, water vapor,
and the included condensate species. The value used depends on the
microphysics in the physics package you are using. For GFS physics
with only a single condensate species, set to 2. For schemes with
prognostic cloud water and cloud ice, such as GFDL AM2/AM3/AM4

Rotsteyn-Klein or Morrison-Gettlean microphysics, set to 3. For warm-
rain (Kessler) microphysics set to 4 (with an inactive ice tracer), which
only handles three species but uses 4 to avoid interference with the
R-K physics. For schemes such as WSM5 or Ferrier that have prog-
nostic rain and snow but not hail, set to 5 (not yet implemented). For
six-category schemes that also have prognostic hail or graupel, such as
the GFDL, Thompson, or WSM6 microphysics, set to 6. A value of 0
turns off condensate loading. 3 by default.

phys_hydrostatic Logical: Option to enable hydrostatic application of heat-
ing from the physics in a nonhydrostatic simulation: heating is applied
in hydrostatic balance, causing the entire atmospheric column to ex-
pand instantaneously. If false, heating from the physics is applied sim-
ply as a temperature tendency. True by default; ignored if hydrostatic
=.true.

pnats Integer: The number of tracers not to advect by the dynamical core.
Unlike dnats, these tracers are not seen by the dynamical core. The
last pnats entries in field_table are not advected. 0 by default.

tau_h2o Real: time-scale (days) for simple methane chemistry to act as
a source of water in the stratosphere. Can be useful if your strato-
sphere dries out too quickly; consider a value between 60 and 120 days
if this is the case. 0. by default, which disables the methane chemistry.
Values less than zero apply the chemistry above 100 mb; else applied
above 30 mb. Requires adiabatic to be false.

use_hydro_pressure Logical: whether to compute hydrostatic pressure
for input to the physics. Currently only enabled for the fvGFS model.
Ignored in hydrostatic simulations. False by default.

z_tracer Logical: whether to transport sub-cycled tracers layer-by-layer,
each with its own computed sub-cycling time step (if q_split = 0). This
may improve efficiency for very large numbers of tracers. False by
default; currently not implemented.

A.1.5 Timestep options

k_split Integer: number of vertical remappings per dt_atmos (physics time
step). 1 by default.

n_split Integer: number of small dynamics (acoustic) time steps between
vertical remapping. 0 by default, in which case the model produces a
good first guess by examining the resolution, dt_atmos, and k_split.

umax Real: for the doubly-periodic grid (grid_type = 4) an estimate of the
maximum wave speed (m/s), used to determine the value of n_split
when n_split = 0. 350 by default.

q_split Integer: number of time steps for sub-cycled tracer advection. 0
by default (recommended), in which case the model determines the
number of time steps from the global maximum wind speed at each
call to the tracer advection.

A.1.6 Grid options

deglat Real: Latitude (in degrees) used to compute the uniform f-plane
Coriolis parameter for doubly-periodic simulations (grid_type = 4). 15.
by default.

do_schmidt Logical: Whether to enable grid stretching and rotation using
stretch_fac, target_lat, and target_lon..false. by default.

dx_const Real: on a doubly-periodic grid (grid_type = 4) specifies the (uni-
form) grid-cell-width in the x-direction, in meters. 1000 by default.

dy_const Real: on a doubly-periodic grid (grid_type = 4) specifies the (uni-
form) grid-cell-width in the y-direction, in meters. 1000 by default.

grid_type Integer: which type of grid to use. If 0, the equidistant gnomonic
cubed-sphere will be used. If 4, a doubly-periodic f-plane cartesian grid
will be used. If -1, the grid is read from INPUT/grid_spec.nc. Values 2,
3, 5, 6, and 7 are not supported and will likely not run. 0 by default.

hybrid_z Logical: whether to use a hybrid-height coordinate, instead of
the usual sigma-p coordinate. False by default. (Not currently main-
tained.)

make_hybrid_z Logical: Converts the vertical coordinate to a hybrid-height
coordinate, instead of the usual sigma-p coordinate. Requires hybrid_z
= True. False by default.

p_ref Real: surface pressure used to construct a horizontally-uniform ref-
erence vertical pressure profile, used in some simple physics packages
in the solo_core and in the Rayleigh damping. This should not be con-
fused with the actual, horizontally-varying pressure levels used for all
other dynamical calculations. 1.e5 by default. Changing this value is
strongly discouraged.

shift_fac Real: westward zonal rotation (or shift) of cubed-sphere grid from
its natural orientation with cube face centers at 0, 90, 180, and 270
degrees longitude. The shift, in degrees, is 180/shift_fac. This shift
does not move the poles. By default this is set to 18, shifting the
grid westward 180/18=10 degrees, so that the edges of the cube do
not run through the mountains of Japan; all standard CM2.x, AM3,
CM3, and HiRAM simulations use this orientation of the grid. Re-
quires do_schmidt =.false.

stretch_fac Real: stretching factor for the Schmidt transformation. This
is the factor by which tile 6 of the cubed sphere will be shrunk, with
the grid size shrinking accordingly. 1 by default, which performs no
grid stretching. Requires do_schmidt =.true. The model will crash if
stretch_fac is set to zero. Values of up to 40 have been found useful
and stable for short-term cloud-scale integrations.

target_lat Real: latitude (in degrees) to which the center of tile 6 will be
rotated; if stretching is done with stretch_fac the center of the high-
resolution part of the grid will be at this latitude. -90 by default, which
does no grid rotation (the Schmidt transformation rotates the south
pole to the appropriate target). Requires do_schmidt =.true.

target_lon Real: longitude to which the center of tile 6 will be rotated. 0
by default. Requires do_schmidt =.true.

nested Logical: whether this is a nested grid. False by default.

twowaynest Logical: whether to use two-way nesting, the process by which
the nested-grid solution can feed back onto the coarse-grid solution.
False by default.

parent_grid_num Integer: Number of the parent to this nested grid. The
coarsest grid in a simulation is numbered 1; further nested grids are
numbered sequentially. Required to be a positive value if nested =
True. Unless you are nesting inside of nested grids or running multiple
(coarse) grids that themselves do not interact, this should be set to 1.
-1 by default, indicating that this grid does not have a parent grid.

parent_tile Integer: number of the tile (ie. face) in which this nested grid
is found in its parent. Required to be a positive value if nested =
true. If the parent grid is not a cubed sphere, or itself is a nested
grid, this should be set to 1. If the parent grid has been rotated (using
do_schmidt) with the intent of centering the nested grid at target_lat
and target_lon, then parent_tile should be set to 6. 1 by default.

refinement Integer: refinement ratio of the nested grid. This is the num-
ber of times that each coarse-grid cell face will be divided into smaller
segments on the nested grid. Required to be a positive integer if nested
= true. Nested grids are aligned with the coarse grid, so non-integer
refinements are not permitted. 3 by default.

nestupdate Integer: type of nested-grid update to use; details are given in
model/fv_nesting.F90. 0 by default.

A.1.7 Solver options

a2b_ord Integer: order of interpolation used by the pressure gradient force
to interpolate cell-centered (A-grid) values to the grid corners. 4 by de-
fault (recommended), which uses fourth-order interpolation; otherwise
second-order interpolation is used.

beta Real: Parameter specifying fraction of time-off-centering for backwards
evaluation of the pressure gradient force. 0.0 by default, which pro-

duces a fully backwards evaluationthe pressure gradient force is en-
tirely evaluated using the updated (time n+1) dynamical fields. A
value of 0.5 will equally weight the PGF determined at times n and
n+1, but may not be stable; values larger than 0.45 are not recom-
mended. A value of 0.4 is recommended for most hydrostatic sim-
ulations, which allows an improved representation of inertia-gravity
waves in the tropics. In non-hydrostatic simulations using the semi-
implicit solver (a_imp > 0.5) the values of a_imp and beta should add
to 1, so that the time-centering is consistent between the PGF and the
nonhydrostatic solver. Proper range is 0 to 0.45.

c2l_ord Integer: order of interpolation from the solvers native D-grid winds
to latitude-longitude A-grid winds, which are used as input to the
physics routines and for writing to history files. 4 by default (recom-
mended); fourth-order interpolation is used unless c2l_ord = 2.

consv_am Logical: whether to enable Angular momentum fixer. False by
default.

consv_te Real: fraction of total energy lost during the adiabatic integration
between calls of the physics, to be added back globally as heat; essen-
tially the strength of the energy fixer in the physics. Note that this is
a global energy fixer and cannot add back energy locally. The default
algorithm increments the potential temperature so the pressure gradi-
ents are unchanged. 0 by default. Proper range is 0 to 1. 1 will restore
the energy completely to its original value before entering the physics;
a value of 0.7 roughly causes the energy fixer to compensate for the
amount of energy changed by the physics in GFDL HiRAM or AM3.

convert_ke Logical: If true, adds energy dissipated through mechanical
damping to heat throughout the entire depth of the domain; if false
(default) this is only done in the sponge layer at the top of the domain.
This option is only enabled if d_con > 1.e-5.

d_con Real: Fraction of kinetic energy lost to explicit damping to be con-
verted to heat. Acts as a dissipative heating mechanism in the dynam-
ical core. 0. by default. Proper range is 0 to 1. Note that this is a local,
physically correct, energy fixer.

delt_max Real: maximum allowed magnitude of the dissipative heating
rate, K s−1; larger magnitudes are clipped to this amount. This can
help avoid instability that can occur due to strong heating when d_con
> 0. A value of 0.008 (a rate equivalent to about 800 K/day) is sufficient
to stabilize the model at 3-km resolution. Set to 1 by default, which
effectively disables this limitation.

fill_dp Logical: like fill except for p, the hydrostatic pressure thickness.
When the filling occurs a diagnostic message is printed out, which is
helpful for diagnosing where the problem may be occurring. Typically
if the pressure filling is needed a crash is inevitable, and thus this
option is often better for debugging than as a safety valve. False by
default.

fv_sg_adj Integer: timescale (in seconds) at which to remove two-delta-z
instability when the local (between two adjacent levels) Richardson
number is less than 1. This is achieved by local mixing, which con-
serves mass, momentum, and total energy. Values of 0 or smaller dis-
able this feature. If n_sponge < 0 then the mixing is applied only to
the top n_sponge layers of the domain. Set to -1 (inactive) by default.
Proper range is 0 to 3600.

halo_update_type Integer: which scheme to use for halo updates in multi-
processor simulations. If set to 1 non-blocking updates are used, which
can improve simulation efficiency on some systems. Otherwise, block-
ing halo updates are performed. 1 by default.

hord_mt Integer: horizontal advection scheme for momentum fluxes. A
complete list of kord options is given in the table below. 9 by de-
fault, which uses the third-order piecewise-parabolic method with the
monotonicity constraint of Huynh, which is less diffusive than other
constraints. For hydrostatic simulation, 8 (the L04 monotonicity con-
straint) is recommended; for nonhydrostatic simulation, the completely
unlimited (“linear” or non-monotone) PPM scheme is recommended.
If no monotonicity constraint is applied, enabling the flux damping
(do_vort_damp = .true.) is highly recommended to control grid-scale
noise. It is also recommended that hord_mt, hord_vt, hord_tm, and

hord_dp use the same value, to ensure consistent transport of all dy-
namical fields, unless a positivity constraint on mass advection (hord_dp)
is desired.

hord_vt Integer: horizontal advection scheme for absolute vorticity and for
vertical velocity in nonhydrostatic simulations. 9 by default.

hord_tm Integer: horizontal advection scheme for potential temperature
and layer thickness in nonhydrostatic simulations. 9 by default.

hord_dp Integer: horizontal advection scheme for mass. A positivity con-
straint may be warranted for hord_dp but not strictly necessary. 9 by
default.

hord_tr Integer: horizontal advection scheme for tracers. 12 by default.
This value can differ from the other hord options since tracers are sub-
cycled (if inline_q == False) and require positive-definite advection to
control the appearance of non-physical negative masses. 8 (fastest) or
10 (least diffusive) are typically recommended.

hord Horizontal Advection Method
5 Fastest unlimited fifth-order scheme with built-in 2∆x filter; not

recommended for hord_tr. This is also the most accurate and least
diffusive FV scheme available within FV3 if monotonicity preser-
vation is not a high priority.

6 Developmental PPM scheme with an intermediate-strength mono-
tonicity constraint. More diffusive than 5.

7 6, applying a 2∆x filter and a positivity constraint
8 PPM with the constraint of Lin 2004
9 PPM with the Hunyh constraint
10 9, with a 2∆x filter, and the Huynh constraint applied only if a

certain condition is met; otherwise unlimited

kord_mt Integer: vertical remapping scheme for the winds. 8 by default; 9
is recommended as the safest option, although 10, and 11 can also be
useful. See table below for a complete list of kord options.

kord_tm Integer: vertical remapping scheme for temperature. If positive
(not recommended), then vertical remapping is performed on total en-
ergy instead of temperature (see remap_t below). -8 by default.

kord_tr Integer: vertical remapping scheme for tracers. 8 by default. 9 or
11 recommended. It is often recommended to use the same value for
kord_tr as for kord_tm.

kord_wz Integer: vertical remapping scheme for vertical velocity in nonhy-
drostatic simulations. 8 by default; 9 recommended. It is also recom-
mended to use the same value for kord_wz as for kord_mt.

kord Vertical remapping reconstruction method
4 Monotone PPM
6 PPM
7 PPM with Hyunh’s second constraint (see L04)
9 Monotonic cubic spline with 2∆z oscillations removed

10 Selectively monotonic cubic spline, where local extrema are re-
tained, with 2∆z oscillations removed

11 Non-monotonic (linear) cubic spline with 2∆z oscillations removed;
if an invalid value for kord is given, this scheme is used

13 Monotonic cubic spline with 2∆z oscillations removed
16 Non-monotonic cubic spline with a strong 2∆z filter (similar to

hord = 6).

no_dycore Logical: disables execution of the dynamical core, only running
the initialization, diagnostic, and I/O routines, and any physics that
may be enabled. Essentially turns the model into a column physics
model. False by default.

remap_t Logical: whether the vertical remapping is performed on (virtual)
temperature instead of (virtual) potential temperature. Since typically
potential temperature increases exponentially from layer to layer near
the top boundary, the cubic-spline interpolation in the vertical remap-
ping will have difficulty with the exponential profile. Temperature

does not have this problem and will often yield a more accurate result.
True by default.

reproduce_sum Logical: uses an exactly-reproducible global sum opera-
tion performed when computing the global energy for consv_te. This is
used because the FMS routine mpp_sum() is not bit-wise reproducible
due to its handling of floating-point arithmetic, and so can return dif-
ferent answers for (say) different processor layouts. True by default.

A.1.8 Nonhydrostatic options

a_imp Real: Controls behavior of the non-hydrostatic solver. Values > 0.5
enable the semi-implicit solver, in which the value of a_imp controls
the time-off-centering: use a_imp = 1.0 for a fully backward time-
stepping. For consistency, the sum of beta and a_imp should be 1
when the semi-implicit solver is used. The semi-implicit algorithm is
substantially more efficient except at very high (km-scale) resolutions
with an acoustic time step of a few seconds or less. 0.75 by default.
Proper values are 0, or between 0.5 and 1 Only used if hydrostatic
=.false.

hydrostatic Logical: whether to use the hydrostatic or nonhydrostatic solver.
True by default.

make_nh Logical: Whether to re-initialize the nonhydrostatic state, by re-
computing dz from hydrostatic balance and setting w to 0. False by
default.

p_fac Real: Safety factor for minimum nonhydrostatic pressures, which
will be limited so the full pressure is no less than p_fac times the hy-
drostatic pressure. This is only of concern in mid-top or high-top mod-
els with very low pressures near the model top, and has no effect in
most simulations. The pressure limiting activates only when model is
in danger of blowup due to unphysical negative total pressures. 0.05 by
default. Only used if hydrostatic =.false. and the semi-implicit solver
is used. Proper range is 0 to 0.25.

use_logp Logical: Enables a variant of the Lin pressure-gradient force al-
gorithm, which uses the logarithm of pressure instead of the Exner
function (as in Lin 1997). This yields more accurate results for regions
that are nearly isothermal. Ignored if hydrostatic = true. False by
default.

A.1.9 Damping options

d2_bg Real: coefficient for background second-order divergence damping.
This option remains active even if nord is nonzero. 0.0 by default.
Proper range is 0 to 0.02.

d2_bg_k1 Real: strength of second-order diffusion in the top sponge layer.
0.16 by default. This value, and d2_bg_k2, will be changed appropri-
ately in the model (depending on the height of model top), so the actual
damping may be very reduced. See atmos_cubed_sphere/model/dyn_core.F90
for details. Recommended range is 0. to 0.2. Note that since diffusion
is converted to heat if d_con > 0 larger amounts of sponge-layer diffu-
sion may be less stable.

d2_bg_k2 Real: strength of second-order diffusion in the second sponge
layer from the model top. 0.02 by default. This value should be lower
than d2_bg_k1.

d4_bg Real: Dimensionless coefficient for background higher-order diver-
gence damping. 0.0 by default. If no second-order divergence damping
is used, then values between 0.1 and 0.16 are recommended. Requires
nord > 0. Note that the scaling for d4_bg differs from that of d2_bg;
nord >= 1 and d4_bg = 0.16 will be less diffusive than nord = 0 and
d2_bg = 0.02.

dddmp Real: Dimensionless coefficient for the second-order Smagorinsky-
type divergence damping. 0.0 by default. 0.2 (the Smagorinsky con-
stant) is recommended if ICs are noisy.

d_ext Real: coefficient for external (barotropic) mode damping. 0.02 by de-
fault. Proper range is 0 to 0.02. A value of 0.01 or 0.02 may help

improve the models maximum stable time step in low-resolution (2-
degree or poorer) simulations; otherwise a value of 0 is recommended.

do_vort_damp Logical: whether to apply flux damping (of strength gov-
erned by vtdm4) to the fluxes of vorticity, air mass, and nonhydrostatic
vertical velocity (there is no dynamically correct way to add explicit dif-
fusion to the tracer fluxes). The form is the same as is used for the di-
vergence damping, including the same order (from nord) damping, un-
less nord = 0, in which case this damping is fourth-order, or if nord = 3,
in which case this damping is sixth-order (instead of eighth-order). We
recommend enabling this damping when the linear or non-monotonic
horizontal advection schemes are enabled, but is unnecessary and not
recommended when using monotonic advection. False by default.

n_sponge Integer: controls the number of layers at the upper boundary on
which the 2∆x filter is applied. This does not control the sponge layer.
0 by default.

nord Integer: order of divergence damping: 0 for second-order; 1 for fourth-
order (default); 2 for sixth-order; 3 for eighth-order. Sixth-order may
yield a better solution for low resolutions (one degree or coarser) by
virtue of it being more scale-selective and will not damp moderately-
well-resolved disturbances as much as does lower-order damping.

nord_tr Integer: Order of tracer damping; values mean the same as for
nord. 0 by default.

rf_cutoff Real: pressure below which no Rayleigh damping is applied if tau
> 0.

rf_fast Logical: option controlling whether to apply Rayleigh damping (for
tau > 0) on the dynamic/acoustic timestep rather than on the physics
timestep. This can help stabilize the model by applying the damping
more weakly more frequently, so the instantaneous amount of damping
(and thereby heat added) is reduced. .false. by default, which applies
the Rayleigh drag every physics timestep.

tau Real: time scale (in days) for Rayleigh friction applied to horizontal
and vertical winds; lost kinetic energy is converted to heat, except

on nested grids. 0.0 by default, which disables damping. Larger val-
ues yield less damping. For models with tops at 1 mb or lower val-
ues between 10 and 30 are useful for preventing overly-strong polar
night jets; for higher-top hydrostatic models values between 5 and 15
should be considered; and for non-hydrostatic models values of 10 or
less should be considered, with smaller values for higher-resolution.

vtdm4 Real: coefficient for background other-variable damping. The value
of vtdm4 should be less than that of d4_bg. A good first guess for
vtdm4 is about one-third the value of d4_bg. 0.0 by default. Requires
do_vort_damp to be .true. Disabled for values less than 1.e-3. Other-
variable damping should not be used if a monotonic horizontal advec-
tion scheme is used.

A.2 Entries in coupler_nml
months, days, hours, minutes, seconds Integer: length of the model in-

tegration in the corresponding units. All are 0 by default, which ini-
tializes the model and then immediately writes out the restart files
and halts.

dt_atmos Integer: time step for the largest atmosphere model loop, corre-
sponding to the frequency at which the top level routine in the dynam-
ics is called, and the physics timestep. Must be set.

current_date Integer(6): initialization date (in the chosen calendar) for
the model, in year, month, day, hour, minute, and second. (0,0,0,0,0,0)
by default, a value that is useful for control integrations of coupled
models.

calendar Character(17): calendar selection; JULIAN is typically recom-
mended, although the other values (THIRTY_DAY_MONTHS, NOLEAP,
NO_CALENDAR) have particular uses in idealized models. Must be
set.

force_date_from_namelist Logical: if .true., will read the initialization
date from the namelist variable current_date, rather than taking the

value from a restart file. If the model is being cold-started (such as
what is typically but not necessarily done if external_ic = .true.) then
the initialization date must be specified in current_date, otherwise the
model will stop. .false. by default.

atmos_nthreads Integer: number of threads for OpenMP multi-threading.
1 by default.

use_hyper_thread Logical: indicates that some of the threads in atmos_nthreads
may be hyperthreads. .false. by default.

ncores_per_node Integer: number of processor codes per physical com-
pute node. Used when setting up hyperthreading to determine number
of virtual vs. hardware threads. 0 by default.

debug_affinity Logical: if .true. prints out a message describing cpu affin-
ity characteristics while initializing OpenMP. .false. by default.

restart_days, restart_secs Integer: frequency at which to write out "in-
termediate" restart files, which are useful for checkpointing in the mid-
dle of a long run, or to be able to diagnose problems during the model
integration. Both are 0 by default, in which case intermediate restarts
are not written out.

A.3 Entries in external_ic_nml
filtered_terrain Logical: whether to use the terrain filtered by the prepro-

cessing tools rather than the raw terrain. .true. by default. Only active
if nggps_ic = .true. or ecmwf_ic = .true.

levp Integer: number of levels in the input (remapped) initial conditions.
64 by default. Only active if nggps_ic = .true.

checker_tr Logical: whether to enable the “checkerboard” tracer test. .false.
by default. Only active if nggps_ic = .true.

nt_checker Integer: number of tracers (at the end of the list of tracers
defined in field_table) to initialize with an idealized “checkerboard”

pattern, with values of either 0 or 1. This is intended to test the mono-
tonicity or positivity constraint in the advection scheme. 0 by default.
Only active if nggps_ic = .true.

A.4 Entries in surf_map_nml
surf_file Character(len=128): File containing topography data. This file

must be in NetCDF format. INPUT/topo1min.nc by default. (Previous
versions of the model have used 5 minute USGS data, which is not
recommended.)

nlon Integer: Size of the longitude dimension in topography data; not used.

nlat Integer: Size of the latitude dimension in topography data; not used.

zero_ocean Logical: whether to prevent the smoothing from extending to-
pography out into the ocean. True by default.

zs_filter Logical: whether to apply smoothing to the topography. True by
default.

A.5 Entries in fv_grid_nml
grid_name Character(len=80): Name of the grid either being read in (if

grid_spec = -1) or being created. This is only used for writing out a
binary file in the directory from which the model is run. Gnomonic by
default.

grid_file Character(len=120): If grid_type = -1 the name of the grid_spec
file to read in. INPUT/grid_spec.nc by default; other values will not
work.

A.6 Entries in test_case_nml
test_case Integer: number of the idealized test case to run. A number of

nest cases are defined in tools/test_cases.F90, of which numbers 19 are

intended for the shallow-water model. Requires warm_start =.false.
11 by default; this creates a resting atmosphere with a very basic ther-
modynamic profile, with topography. If you wish to initialize an Aqua-
planet simulation (no topography) set to 14.

alpha Real: In certain shallow-water test cases specifies the angle (in frac-
tions of a rotation, so 0.25 is a 45-degree rotation) through which the
basic state is rotated. 0 by default.

A.7 Entries in nest_nml
ngrids Integer: number of grids in this simulation. 1 by default. (The

variable ntiles has the same effect, but its use is not recommended as
it can be confused with the six tiles of the cubed sphere, which in this
case form only one grid.)

nest_pes Integer(100): array carrying number of PEs assigned to each grid,
in order. Must be set if ngrids > 1.

p_split Integer: number of times to sub-cycle dynamics, performing nested-
grid BC interpolation and (if twowaynest ==.true.) two-way updating
at the end of each set of dynamics calls. If p_split > 1 the user should
decrease k_split appropriately so the remapping and dynamics time
steps remain the same. 1 by default.

A.8 Entries in nggps_diag_nml
fdiag Real(1028): Array listing the diagnostic output times (in hours) for

the GFS physics. This can either be a list of times after initialization,
or an interval if only the first entry is nonzero. All 0 by default, which
will result in no outputs.

A.9 Entries in atmos_model_nml (for fvGFS)
blocksize Integer: Number of columns in each “block” sent to the physics.

OpenMP threading is done over the number of blocks. For best perfor-

mance this number should divide the number of grid cells per processor
((npx-1)*(npy-1) / (layout_x)*(layout_y)) and be small enough so the
data can best fit into cache?values around 32 appear to be optimal on
Gaea. 1 by default

chksum_debug Logical: whether to compute checksums for all variables
passed into the GFS physics, before and after each physics timestep.
This is very useful for reproducibility checking. .false. by default.

dycore_only Logical: whether only the dynamical core (and not the GFS
physics) is executed when running the model, essentially running the
model as a solo dynamical core. .false. by default.

A.10 Entries in fms_nml
domains_stack_size Integer: size (in bytes) of memory array reserved for

domains. For large grids or reduced processor counts this can be large
(>10 M); if it is not large enough the model will stop and print a recom-
mended value of the stack size. Default is 0., reverting to the default
set in MPP (which is probably not large enough for modern applica-
tions).

Appendix B

Variables and notation

u, v (*) D-grid winds
w (*) Explicit vertical velocity
δp∗ (*) Layer hydrostatic pressure thickness, proportional to mass
Θv (*) Virtual potential temperature
δz (*) Layer geometric depth
ρ Total (air and all water species) mass density, equal to −δp∗

gδz
Q i (*) Density of tracer i (also written Q as a generic tracer density)
qi Mixing ratio of tracer i, defined with respect to total air mass; equal to

Q i/δp∗

qv Mixing ratio of water vapor
p Total cell-mean pressure
p∗ Cell-mean hydrostatic pressure
p′ Cell-mean nonhydrostatic pressure component, equal to p− p∗

∆A, ∆x, ∆y D-grid cell areas and cell face lengths
∆Ac, ∆xc, ∆yc Dual-grid cell areas and cell face lengths
∆t Lagrangian dynamics (or acoustic) time step
∆T Vertical remapping interval
∆τ Physics time step
cpd Specific heat of dry air at constant pressure
Rd Gas constant for dry air
cp Variable specific heat of moist air
κ R/cp, where R is the (variable) gas constant of moist air
i, j, k Spatial grid-cell indices for the local x-, y-, and z-directions, respectively,

given as subscripts

55

n time index
m tracer index, given as a subscript
n time index, given as a superscript: tn = n∆t

Here, a (*) indicates a prognostic variable. All variables are cell-means (or
face-means for horizontal winds) unless otherwise noted. The differencing
notation used in this document follows that of LR96, LR97, and L04, in
which the operator δxφ is defined as a centered-difference operator:

(
δxφ

)
i+1/2 =φi+1 −φi. (B.1)

The indices on dependent variables are suppressed unless explicitly needed.)
This definition differs from the similar operators of in the literature in-

tended to be second-order discretizations of a derivative; to do this with our
definition of δx a 1

∆x term would be needed to complete the discrete deriva-
tive.

B.1 Important Relations

Cell-mean pressure:

p∗ = δp∗

δ log p∗ (hydrostatic) (B.2)

p =ρRdTv =−Rd

g
δp∗Tv

δz
(nonhydrostatic) (B.3)

Conversion from temperature T to virtual potential temperature Θv:

Tv = T (1+εqv) (B.4)

Θv = Tv/pκ, (B.5)

where ε= 1+Rv/Rd and κ= R/cp. Note that we do not include the arbitrary
constant factor pκ0 in our definition of potential temperature; our form is
the equivalent to setting p0 = 1 Pa but simpler and more computationally
efficient.

B.2 References

CW84 Collella, P, and P. R. Woodward, April 2004: The Piecewise Parabolic
Method (PPM) for Gas-Dynamical Simulations. Journal of Computa-
tional Physics, 54, 174–201.

L94 Lin, Shian-Jiann, et al., July 1994: A Class of the van Leer-type Trans-
port Schemes and Its Application to the Moisture Transport in a Gen-
eral Circulation Model. Monthly Weather Review, 122:7, 1575–1593.

LR96 Lin, Shian-Jiann, and R B Rood, September 1996: Multidimensional
Flux-Form Semi-Lagrangian Transport Schemes. Monthly Weather
Review, 124:9, 2046–2070.

LR97 Lin, Shian-Jiann, and R B Rood, October 1997: An explicit flux-form
semi-lagrangian shallow-water model on the sphere. Quarterly Jour-
nal of the Royal Meteorological Society, 123:544, 2477–2498.

L97 Lin, Shian-Jiann, July 1997: A finite-volume integration method for
computing pressure gradient force in general vertical coordinates. Quar-
terly Journal of the Royal Meteorological Society, 123:542, 1749–1762.

L04 Lin, Shian-Jiann, 2004: A "vertically Lagrangian" finite-volume dy-
namical core for global models. Monthly Weather Review, 132:10, 2293–
2307.

PL07 Putman, W M., and Shian-Jiann Lin, 2007: Finite-volume transport
on various cubed-sphere grids. Journal of Computational Physics,
227:1, 55–78.

HL13 Harris, Lucas M., and Shian-Jiann Lin, January 2013: A two-way
nested global-regional dynamical core on the cubed-sphere grid. Monthly
Weather Review, 141:1.

HLT16 Harris, L.M., S.-J. Lin, and C.-Y. Tu, 2016: High-Resolution Climate
Simulations Using GFDL HiRAM with a Stretched Global Grid. Jour-
nal of Climate, 29:11, 4293–4314.

B.3 Revision History
v2.0beta 14 Nov 2017 Release candidate to EMC — lmh

v1.1beta 11 Sep 2017 Intermediate draft to EMC — lmh

v1.0beta 13 Feb 2017 First draft to partners at EMC, CAPS, AOML, GSFC,
AOML — lmh

	FV3 introduction
	A brief history of FV3
	Outline of the solver

	Stabilization and filtering options
	Divergence damping
	Hyperdiffusion (flux, or ``vorticity'') damping
	Energy-, momentum-, and mass-conserving 2z filter
	Model-top sponge layer and energy-conserving Rayleigh damping

	Physics-dynamics coupling
	Staggered wind interpolation
	Condensate loading and mass conservation

	Grid refinement techniques
	Grid stretching
	Grid nesting

	Namelist Guide
	Entries in fv_core_nml
	Required options:
	Initialization options:
	I/O and diagnostic options:
	Options controlling tracers and interactions with physics
	Timestep options
	Grid options
	Solver options
	Nonhydrostatic options
	Damping options

	Entries in coupler_nml
	Entries in external_ic_nml
	Entries in surf_map_nml
	Entries in fv_grid_nml
	Entries in test_case_nml
	Entries in nest_nml
	Entries in nggps_diag_nml
	Entries in atmos_model_nml (for fvGFS)
	Entries in fms_nml

	Variables and notation
	Important Relations
	References
	Revision History

